DataModule
- class aixd.mlmodel.data.data_loader.DataModule(*args: Any, **kwargs: Any)[source]
Bases:
LightningDataModule
Data module for the ML model. It takes care of splitting the data into train, val and test sets, normalizing the data.
- Parameters:
x (Union[np.ndarray, torch.Tensor]) – The input fata matrix.
y (Union[np.ndarray, torch.Tensor]) – The output data matrix.
input_ml_dblock (InputML) – Input data block, defining normalizations, the type of the input data, and the heads for the ML model.
output_ml_dblock (OutputML) – Output data block, defining normalizations, the type of the output data, and the heads for the ML model.
batch_size (int, optional) – Batch size. The default is 512.
split_ratios (List[Union[int, float]], optional) – List of ratios for splitting the data into train, val and test sets. The default is [0.8, 0.1, 0.1].
random_seed (int, optional) – Random seed for splitting the data. The default is RANDOM_SEED_SPLIT.
predict (bool, optional) – Whether to create a predict set. The default is False.
Methods
Creates a data module from a dataset.
Creates a data module from parameters returned by the get_parameters(...) method.
Computes a checksum for the training/validation/test data.
Get parameters defining the data module.
Normalize the input and output data.
Normalize only the input data.
Normalize only the output data.
Calculates the dimensions of the input and output of the ML model.
Unnormalize and do the inverse transformation of the data.
Unnormalize and do the inverse transformation of the data.
Unnormalize the input and output data.
Unnormalize only the input data.
Unnormalize only the output data.