DataObject
- class aixd.data.DataObject(name: str, dim: int, domain: Domain, unit: str | None = None, position: int | None = None, position_index: int | None = None, transformations: List[str] | List[DataObjectTransform] | None = None, type: str = 'any', dtype: str | None = None, flag_split_perdim: bool = False)[source]
Bases:
object
Master data object, to define each of the different building blocks that are going to be used to form the design parameters and performance attributes vectors.
- Parameters:
name (str) – Name of the data object.
dim (int) – Dimensionality of the data object, or different columns to perform the split on.
domain (Domain, optional) – Domain of the data object.
unit (str, optional, default=None) – Unit of the data object (e.g. m, kg. m^2, m/s^2 etc.). Use ^ to indicate powers (e.g. m^2), and _ to indicate subscripts (e.g. m_1).
position (int, optional, default=None) – Position of the data object in the vector.
position_index (int, optional, default=None) – Index of the data object in the vector.
transformations (Union[List[str], List[DataObjectTransform]], optional, default=None) – List of transformations to be applied to the data object.
type (str, optional, default=”any”) – Name of the type of data object. Either real, categorical, integer, ordinal or any.
dtype (str, optional, default=None) – The dtype of the numpy array that is expected.
flag_split_perdim (bool, optional, default=False) – If True, object is split across dimensions in a DataBlock.
Methods
Adds the transformation at the end.
Check if the data is consistent with the defined domain.
Returns a copy of the data object.
Returns the activation function for approximating this feature.
Returns the evaluation loss function for this feature.
Returns two ML heads necessary for encoding and decoding the given data object.
Returns the loss function for approximating this feature.
Returns grid samples from the domain of the data object.
Returns if the passed name match with the name of the DataObject.
Inverse transformation of the data matrix according to specification DataObject.transformations.
Plots the distribution of the passed data.
Adds the transformation at the start.
Prints an overview of the defined transformations.
Returns random samples from the domain of the data object.
Returns samples from the domain of the data object around the given centroid.
Transforms the data matrix according to specification DataObject.transformations.
Check if all transformations are fitted.
Updates the domain of the data object with the passed data.